

Published on Web 05/11/2007

Aryl Hydroxylation from a Mononuclear Copper-Hydroperoxo Species

Debabrata Maiti, Heather R. Lucas, Amy A. Narducci Sarjeant, and Kenneth D. Karlin* Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218 Received March 11, 2007; E-mail: karlin@jhu.edu

Research advances concerning the active-site chemistry of dioxygen activating copper enzymes have shown that single copper center O₂-derived reactive Cu–oxygen species are implicated in a number of situations. This includes biological oxygenases such as peptidylglycine- α -hydroxylating monooxygenase (PHM) and dopamine- β monoxygenases (D β M).¹ While these possess two copper ions per active subunit which are ~11 Å apart,^{2a} the Cu_M (\equiv Cu_B) site is where substrate H-atom abstractions occur, resulting in overall O₂/ascorbate copper-mediated hydroxylation chemistry.^{1a,b} Also, single-copper ion mediated amino-acid oxygenation or oxidative-coupling occurs in the biogenesis of active-site cofactors in 2,4,5-trihydroxyphenylalanine (TOPA) formation (copper amine oxidases) and Tyr–Cys coupling (galactose oxidase).^{1c,2b,c}

In the last few decades, coordination chemistry efforts have generated considerable insights into ligand-CuI/O2 chemistry, such as the generation of new types of copper-dioxygen adducts, their kinetics of formation, structures, associated spectroscopy, and reactivity.3 Yet, the chemistry of mononuclear entities such as cupric-superoxides (Cu^{II}-O2^{•-}) and hydroperoxides (Cu^{II}-OOH) is not as well developed.^{1a} For a long time, a Cu^{II}-OOH species was considered to be the likely key intermediate in $D\beta M$ and PHM reactivity, while more recent experimental and computational advances suggest an active-site Cu^{II}–O₂•⁻ entity most likely effects initial substrate H*-abstraction.^{1b,4} However, other computational studies suggest that the O₂-derived O-O bond first cleaves to give a cupryl (e.g., $Cu^{III}=O \leftrightarrow Cu^{II}-O^{\bullet})^5$ or higher oxidation state (e.g., [CuO]²⁺)^{6a} species and this effects the H-atom abstraction.⁶ Synthetic chemistry investigations have thus far revealed only limited substrate reactivity with mononuclear Cu^{II}-O₂•-7 or Cu^{II}--OOH complexes,^{8,9} especially with C-H containing substrates. There are as yet no discrete examples or evidence for mononuclear high-valent copper-oxo species.1a,10

Two groups have recently achieved substrate C–H activation chemistries starting from well-characterized dinuclear μ -OOH–dicopper(II) complexes, oxidative *N*-dealkylation or RCH₂C=N oxidative cleavage (to RCH=O + cyanide).¹¹ Suzuki has also observed a hydrocarbon attack from a Cu^{II}₂(⁻OH)₂ + H₂O₂ reaction, giving a Cu^{II}–OOR_{ligand-substrate} product.¹² Here, we rather present the chemistry of a *mononuclear* Cu^{II}–⁻OOH complex which leads to the hydroxylation of an aryl substrate.

Complex **1**, with 6tBP ligand, is a derivative of the well-studied tris(2-pyridylmethyl)amine (TMPA) ligand, however it possesses a proximate aryl group (Figure 1).¹³ The X-ray structure¹³ of the Cu^{II} complex as perchlorate salt, [(6tbp)Cu^{II}(acetone)]²⁺ (**1**) (Figure 1), reveals a square-based pyramidal coordination sphere with labile acetone ligand in an equatorial position; a longer axial ligand is provided by the pyridyl group with the 6-aryl substituent, Cu–N4 = 2.4454(13) Å. In the manner commonly used to generate hydroperoxo-Cu^{II} complexes,⁸ we added ~5 equiv H₂O₂/Et₃N using 50% H₂O_{2(aq)} to a blue acetone solution of **1** at -80 °C. The green product solution is formulated as the hydroperoxide [(6tbp)Cu^{II}-(⁻OOH)]⁺ (**2**); $\lambda_{max} = 380$ nm ($\epsilon = 1500$ M⁻¹ cm⁻¹), assignable to a ⁻OOH \rightarrow Cu^{II} LMCT band.¹⁴ A typical Cu^{II} axial EPR

Figure 1. X-ray structure of **1**, as precursor to hydroperoxo-Cu^{II} complex **2**, leading to a phenolate-Cu^{II} entity which upon demetalation gives the o-hydroxylated phenol 6tBPOH. The oxygen atom(s) red-labeling tracks results from 18-O substitutions, see text.

spectrum for **2** is consistent with mononuclear formulation, $g_{||}=$ 2.245, $g_{\perp} = 2.042$, $A_{||} = 180$ G.¹³ Direct evidence comes from ESI-MS (-80 °C, acetone), showing a strong parent peak cluster with m/z 518.01 (and possessing the expected ^{63,65}Cu pattern) corresponding to [(6tbp)Cu^{II}(-OOH)]⁺. When formation of **1** was instead carried out using H₂¹⁸O₂, the positive ion peak shifts to 522.04, attributed to [(6tbp)Cu^{II}(-¹⁸O¹⁸OH)]⁺; fitting of the parent peak pattern around m/z = 522 indicated >99% 18-O incorporation.¹³

While $[(6tbp)Cu^{II}(-OOH)]^+$ (2) is quite stable in solution at -80 °C, warming results in a change in color to brownish-green. TLC and ESI-MS data obtained from the product solution which was stripped of copper ion by addition of Na₂EDTA (aq) and extracted into CH₂Cl₂ revealed unreacted 6tBP ligand. However, a new product obtained in ~20% yield (which decreases with less added H₂O₂) after chromatography exhibits m/z = 439.47, corresponding to a hydroxylated 6tBP moiety, [6tBPOH + H]⁺ and m/z = 461.47 [6tBPOH + Na] (Figure 1). A parent anion peak at m/z = 437.20 (6tBPO⁻) was obtained when mass spectra were recorded in negative ion mode.¹³ This product is the *o*-phenol (Figure 1), as deduced by ¹H NMR and ¹³C NMR data analyses. The 6tBPOH O-atom is derived from the Cu^{II—}OOH moiety; an ion shift from 461.47 (6tBPOH + Na) to 463.63 (6tBP¹⁸OH + Na) was recorded for the 6tBP¹⁸OH when H₂¹⁸O₂ was used to generate **2**.¹³

Most interestingly, when the warmed reaction solution is subjected to ESI-MS analysis (prior to EDTA treatment), the predominant higher molecular weight species detected occurs at m/z = 500.52, corresponding to a likely reaction intermediate, a phenolate-Cu^{II} complex [(6tbpO⁻)Cu^{II}]⁺ (Figure 1), confirmed again by the shift to m/z = 502.49 ([(6tbp¹⁸O⁻)Cu^{II}]⁺) when H₂¹⁸O₂ is introduced to the reaction; a characteristic ArO⁻-to-Cu(II) charge transfer absorption is also detected.^{13,15} Taken together, the data suggest that hydroperoxo-Cu^{II} (2) derived chemistry effects the aryl hydroxylation of 6tBP, *a reaction that up to this point has only* Scheme 1

been attributed to dinuclear complexes, either $\eta^2: \eta^2$ -peroxodicopper-(II) or bis-µ-oxo dicopper(III) species.^{3b,16} We suggest a mechanism where the Cu^{II}-OOH moiety undergoes O-O cleavage, leading to a high-valent copper-oxo species which attacks the aryl group.^{17–20} This suggestion is compelling since for an iron complex with a nearly identical 6-PhTPA ligand {6-PhTPA is like 6tBP but with a 6-phenyl rather than 6-(4-tBuphenyl) group on one pyridyl arm}, Que and co-workers²¹ established homolytic cleavage from an Fe^{III}-OOR species to give an Fe^{IV}=O moiety which effects ligand aryl hydroxylation.22

To investigate the possibility that a dioxygen derived species may rather be effecting this aryl hydroxylation, we examined the product(s) of O₂ reaction with a copper(I) complex of 6tBP, [(6tbp)- Cu^{I} (3, X-ray, Scheme 1). Bubbling O₂ directly through a -80 °C THF solution of 3 results in a color change from light to bright brownish-yellow, giving an EPR silent bis-µ-oxo-dicopper(III) complex [{(6tbp)Cu^{III}}₂(O)₂]²⁺ (4), $\lambda_{max} = 383 \text{ nm}$ ($\epsilon = 7000 \text{ M}^{-1}$ cm⁻¹) (Scheme 1). The formulation is based on well-established spectral signatures^{3a} and the result is identical to that recently reported for a [(6-PhTPA)Cu^I]⁺/O₂ reaction [6-PhTPA described above], giving [{(6-PhTPA)Cu^{III}}₂(O)₂]²⁺ (**5**), $\nu_{Cu-O} = 599 \text{ cm}^{-1.23}$ Complex 4 in THF is unstable even at -80 °C, decomposing within 15 min and affording oxidized solvent, 2-hydroxy-THF (~40%) and γ -butyrolactone (<5%).¹³ When the formation of **4** was carried out in toluene at -80 °C, thermal decomposition produces PhCHO (35%) with 70% 18-O incorporation (giving PhCH¹⁸O) when using $^{18}O_2$ labeled 4. The reaction of 4 with 2,4-di-tert-butylphenol in diethyl ether produces the typical oxidative coupling product 4,4',6,6'-tetra-t-butyl-2,2'-biphenol (50%) after low-temperature reaction, warming, and workup (Scheme 1).

The reactivity of $[{(6tbp)Cu^{III}}_2(O)_2]^{2+}$ (4) with substrates parallels the behavior known for [Cu^{III}₂(O)₂]²⁺ species.³ Warming $[{(6-PhTPA)Cu^{III}}_2(O)_2]^{2+}$ (5) gives a trace of oxidatively Ndealkylated ligand decomposition products.²³ Thus, it appears that neither 4 nor 5 effect aryl hydroxylation chemistry, which does however derive from the Cu^{II} -OOH complex [(6tbp)Cu^{II}(-OOH)]⁺ (2). The lack of aryl ring hydroxylation of 6tBP or 6-PhTPA by the $[Cu^{III}_{2}(O)_{2}]^{2+}$ diamond core may be attributed to axial positioning of the arylpyridyl arm, precluding a geometry favorable for oxoatom attack and transfer to the pendant aryl group.²³ Axial ligand elongation is observed for 6-substituted 2-pyridyl ligand arms in $[{(6-Me_2TPA)Cu^{III}}_2(O)_2]^{2+}$ (5) (X-ray).^{24,25} However, the proximity of a reactive species and aryl substrate in the 6-position of a coordinating pyridyl ligand does lead to aryl hydroxylation for [(6-PhTPA)Fe^{III}(⁻OOR)]²⁺, as mentioned above, in our complex $[(6tbp)Cu^{II}(-OOH)]^+$ (2) and for a $Cu^{III}_2(O^{2-})_2$ species supported by the bidentate 2-(diethylaminomethyl)-6-phenylpyridine ligand.²⁶

In summary, the chemistry presented reveals that a significant aryl hydroxylation chemistry can be effected by a discrete mononuclear Cu^{II}-hydroperoxo complex or derived species. The reaction does not proceed from bis-µ-oxo-dicopper(III) chemistry. [(6tbp)Cu^{II}- $(^{-}OOH)]^{+}$ (2) or complexes of similar design may now serve as

important entities for further detailed mechanistic investigations which could lead to insights into copper promoted O-O cleavage and new high-valent copper-oxo chemistry of chemical and biochemical consequence.

Acknowledgment. This work was supported by a grant from the National Institutes of Health (K.D.K., Grant GM28962).

Supporting Information Available: Synthetic details, descriptions of reactions, product analyses/characterization, and CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Itoh, S. Curr. Opin. Chem. Biol. 2006, 10, 115-122. (b) Klinman, J. P. J. Biol. Chem. 2006, 281, 3013-3016. (c) McGuirl, M. A.; Dooley, D. M. Copper Proteins with Type 2 Sites. In Encyclopedia of Inorganic Chemistry, 2nd ed; King, R. B., Ed.; John Wiley & Sons Ltd.: Chichester, 2005; Vol. II, pp 1201-1225.
- (a) Prigge, S. T.; Eipper, B.; Mains, R.; Amzel, L. M. Science 2004, 304, 864-867. (b) Okeley, N. M.; Van der Donk, W. A. Chem. Biol. 2000, 7 R159-R171. (c) Whittaker, M. M.; Whittaker, J. W. J. Biol. Chem. 2003, 278 22090-22101
- (3) (a) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013–1045. (b) Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047–1076. (c) Quant Hatcher, L.; Karlin, K. D. J. Biol. Inorg. Chem. 2004, 9, 669-683.
- (4) Chen, P.; Solomon, E. I. J. Am Chem. Soc. 2004, 126, 4991-5000.
- (5) Decker, A.; Solomon, E. I. Curr. Opin. Chem. Biol. 2005, 9, 152-163. (6) (a) Crespo, A.; Marti, M. A.; Roitberg, A. E.; Amzel, L. M.; Estrin, D. A. J. Am. Chem. Soc. 2006, 128, 12817–12828. (b) Yoshizawa, K.; Kihara, N.; Kamachi, T.; Shiota, Y. Inorg. Chem. 2006, 45, 3034–3041.
 (7) Maiti, D.; Fry, H. C.; Woertink, J. S.; Vance, M. A.; Solomon, E. I.; Karlin, K. D. J. Am. Chem. Soc. 2007, 129, 264–265.
- Fujii, T.; Naito, A.; Yamaguchi, S.; Wada, A.; Funahashi, Y.; Jitsukawa, (8)K.; Nagatomo, S.; Kitagawa, T.; Masuda, H. Chem. Commun. 2003, 2700-2701
- Yamaguchi, S.; Masuda, H. Sci. Technol. Adv. Mat. 2005, 6, 34-47.
- (10) Dinuclear copper-oxo species, Cu^{III}₂(O²⁻)₂ complexes, are well known.³
 (11) (a) Itoh, K.; Hayashi, H.; Furutachi, H.; Matsumoto, T.; Nagatomo, S.;
- (a) K., Hayashi, H., Hurdachi, H., Walsahioto, S., Tosha, T.; Terada, S.; Fujinani, S.; Suzuki, M.; Kitagawa, T. J. Am. Chem. Soc. 2005, 127, 5212–5223 (b) Li, L.; Sarjeant, A. A. N.; Vance, M. A.; Zakharov, L. N.; Rheingold, A. L.; Solomon, E. I.; Karlin, K. D. J. Am. Chem. Soc. 2005, 127, 15360–15361.
- (12) Mizuno, M.; Honda, K.; Cho, J.; Furutachi, H.; Tosha, T.; Matsumoto, T.; Fujinami, S.; Kitagawa, T.; Suzuki, M. Angew. Chem., Int. Ed. 2006, 45, 6911-6914
- (13) See Supporting Information.
- (14) Yamaguchi, S.; Kumagai, A.; Nagatomo, S.; Kitagawa, T.; Funahashi, Y.; Ozawa, T.; Jitsukawa, K.; Masuda, H. Bull. Chem. Soc. Jpn. 2005, 78. 116-124.
- (15) In fact, UV-vis & EPR spectroscopy, along with ESI-MS interrogation indicates low-temperature formation of solutions with Cu(II) plus a phenoxyl radical (thus oxygenation for solutions with Ca(1) phenoxyl radical (thus oxygenation has already occurred) when reaction solutions are left at -44 °C.¹³ No evidence was obtained which could relate to the identification of any new species, for example, a cupryl species.
- (16) Mirica, L. M.; Vance, M.; Rudd, D. J.; Hedman, B.; Hodgson, K. O.; Solomon, E. I.; Stack, T. D. P. *Science* **2005**, *308*, 1890–1892.
- (17) We note that in similarly constructed Cu^{II}-OOH complexes with modified TMPA frameworks, Masuda^{14,18} has shown that a 6-N-H group on pyridyl-ligand arms hydrogen-bonds to the proximal oxygen atom of a Cu^{II} -hydroperoxo group. Thus, the ortho C-H substrate of the 6-aryl moiety of 6tBP may certainly be in close proximity to either a hydroperoxo O-atom of [(6tbp)Cu^{II}(⁻OOH)]+ (2) or oxo atom of a high-valent Cu-O intermediate
- (18) Wada, A.; Harata, M.; Hasegawa, K.; Jitsukawa, K.; Masuda, H.; Mukai, M.; Kitagawa, T.; Einaga, H. Angew. Chem., Int. Ed. 1998, 37, 798-799
- (19) Perhaps the reaction occurs by concerted attack of the -OOH in 2 on the aryl substrate. Otherwise, Yu and coworkers²⁰ recently describe the Cu-(II)-promoted aryl hydroxylation of a 2-phenylpyridyl moiety, suggesting the reaction proceeds via electron-transfer giving an aryl cation-radical, nucleophilic ring attack, etc.
- (20) Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 6790-6791.
- (21) Jensen, M. P.; Lange, S. J.; Mehn, M. P.; Que, E. L.; Que, L. J. Am Chem. Soc. 2003, 125, 2113–2128.
- (22) Seo, M. S.; Kamachi, T.; Kouno, T.; Murata, K.; Park, M. J. P.; Yoshizawa, K.; Nam, W. Angew. Chem., Int. Ed. **2007**, 46, 2291–2294. Jensen, M. P.; Que, E. L.; Shan, X. P.; Rybak-Akimova, E.; Que, L. Dalton Trans. **2006**, 3523–3527. (23)
- (24) $6-Me_2TPA = (2-pyridylmethyl)bis(6-methyl-2-pyridylmethyl)amine.$
- (25) Hayashi, H.; Fujinami, S.; Nagatom, S.; Ogo, S.; Suzuki, M.; Uehara, A.; Watanabe, Y.; Kitagawa, T. J. Am. Chem. Soc. 2000, 122, 2124– 2125.
- Holland, P. L.; Rodgers, K. R.; Tolman, W. B. Angew. Chem., Int. Ed. (26)1999, 38, 1139-1142.

JA071704C